Oscillating hysteresis in the q-neighbor Ising model.

نویسندگان

  • Arkadiusz Jȩdrzejewski
  • Anna Chmiel
  • Katarzyna Sznajd-Weron
چکیده

We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q. Moreover, we show that for q=3 the phase transition is continuous and that it is discontinuous for larger values of q. For q>3, the hysteresis exhibits oscillatory behavior-expanding for even values of q and shrinking for odd values of q. Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q=5, which might be taken as evidence for the so-called mixed-order phase transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions

Experimental, analytical, and numerical results suggest that the mechanism by which a uniaxial single-domain ferromagnet switches after sudden field reversal depends on the field magnitude and the system size. Here we report new results on how these distinct decay mechanisms influence hysteresis in a two-dimensional nearest-neighbor kinetic Ising model. We present theoretical predictions suppor...

متن کامل

Kinetic Ising model in an oscillating field : Finite - size scaling at the dynamic phase transition

We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations. The period-averaged magnetization is the order parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we present the first finite-size scaling study of the DPT for this model. Evidence of a diverging...

متن کامل

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

Disorder induced hysteresis in diluted kinetic Ising model

Dynamic phase transition in diluted kinetic Ising model in two dimensions has been studied in presence of external time dependent oscillating magnetic field applying Glauber Monte Carlo spin flip dynamics. A dynamic phase transition from a dynamically ordered to dynamically disordered ferromagnet is identified studying dynamic order parameter against temperature for different concentrations of ...

متن کامل

Dynamic Phase Transition and Hysteresis in Kinetic Ising Models

We briefly introduce hysteresis in spatially extended systems and the dynamic phase transition observed as the frequency of the oscillating field increases beyond a critical value. Hysteresis and the decay of metastable phases are closely related phenomena, and a dynamic phase transition can occur only for field amplitudes, temperatures, and system sizes at which the metastable phase decays thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 5  شماره 

صفحات  -

تاریخ انتشار 2015